The recent success of 3D Gaussian Splatting (3DGS) has reshaped novel view synthesis by enabling fast optimization and real-time rendering of high-quality radiance fields. However, it relies on simplified, order-dependent alpha blending and coarse approximations of the density integral within the ra...
Jan U. Müller, Robin Tim Landsgesell, Leif Van Holland
Large-scale video generation models have shown remarkable potential in modeling photorealistic appearance and lighting interactions in real-world scenes. However, a closed-loop framework that jointly understands intrinsic scene properties (e.g., albedo, normal, material, and irradiance), leverages t...
We present Particulate, a feed-forward approach that, given a single static 3D mesh of an everyday object, directly infers all attributes of the underlying articulated structure, including its 3D parts, kinematic structure, and motion constraints. At its core is a transformer network, Part Articulat...
The collection of large-scale and diverse robot demonstrations remains a major bottleneck for imitation learning, as real-world data acquisition is costly and simulators offer limited diversity and fidelity with pronounced sim-to-real gaps. While generative models present an attractive solution, exi...
Many systems exhibit complex interactions between their components: some features or actions amplify each other's effects, others provide redundant information, and some contribute independently. We present a simple geometric method for discovering interactions and redundancies: when elements are ad...
Reality is a dance between rigid constraints and deformable structures. For video models, that means generating motion that preserves fidelity as well as structure. Despite progress in diffusion models, producing realistic structure-preserving motion remains challenging, especially for articulated a...
Accurately quantifying vitiligo extent in routine clinical photographs is crucial for longitudinal monitoring of treatment response. We propose a trustworthy, frequency-aware segmentation framework built on three synergistic pillars: (1) a data-efficient training strategy combining domain-adaptive p...
Softmax attention is a central component of transformer architectures, yet its nonlinear structure poses significant challenges for theoretical analysis. We develop a unified, measure-based framework for studying single-layer softmax attention under both finite and infinite prompts. For i.i.d. Gauss...
The rapid deployment of Large Language Models (LLMs) has created an urgent need for enhanced security and privacy measures in Machine Learning (ML). LLMs are increasingly being used to process untrusted text inputs and even generate executable code, often while having access to sensitive system cont...
Video matting remains limited by the scale and realism of existing datasets. While leveraging segmentation data can enhance semantic stability, the lack of effective boundary supervision often leads to segmentation-like mattes lacking fine details. To this end, we introduce a learned Matting Quality...
Through multi-agent competition and the sparse high-level objective of winning a race, we find that both agile flight (e.g., high-speed motion pushing the platform to its physical limits) and strategy (e.g., overtaking or blocking) emerge from agents trained with reinforcement learning. We provide e...
Vineet Pasumarti, Lorenzo Bianchi, Antonio Loquercio
Evaluating conditional coverage remains one of the most persistent challenges in assessing the reliability of predictive systems. Although conformal methods can give guarantees on marginal coverage, no method can guarantee to produce sets with correct conditional coverage, leaving practitioners with...
Coordinate-based neural networks have emerged as a powerful tool for representing continuous physical fields, yet they face two fundamental pathologies: spectral bias, which hinders the learning of high-frequency dynamics, and the curse of dimensionality, which causes parameter explosion in discrete...
Model fingerprint detection techniques have emerged as a promising approach for attributing AI-generated images to their source models, but their robustness under adversarial conditions remains largely unexplored. We present the first systematic security evaluation of these techniques, formalizing t...
We introduce an unsupervised machine-learning framework that discovers optimally compressed representations of quantum many-body ground states. Using an autoencoder neural network architecture on data from $L$-site Fermi-Hubbard models, we identify minimal latent spaces with a sharp reconstruction q...